Steins method, Malliavin calculus and infinite-dimensional Gaussian analysis

نویسنده

  • Giovanni PECCATI
چکیده

This expository paper is a companion of the four one-hour tutorial lectures given in the occasion of the special month Progress in Stein’s Method, held at the University of Singapore in January 2009. We will explain how one can combine Stein’s method with Malliavin calculus, in order to obtain explicit bounds in the normal and Gamma approximation of functionals of in…nite-dimensional Gaussian …elds. The core of our discussion is based on a series of papers jointly written with I. Nourdin, as well as with I. Nourdin and A. Réveillac. Key Words: Central limit theorem; Gamma approximation; Gaussian approximation; Gaussian processes; Malliavin calculus; Stein’s method; Wiener chaos. Mathematics Subject Classi…cation: 60F05 60G15 60H05 60H07 Contents 1 Overview and motivation 2 2 Preliminary example: exploding quadratic Brownian functionals without Stein’s method 4 2.1 Statement of the problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 The method of cumulants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Random time-changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 3 Gaussian measures 9 4 Wiener-Itô integrals 11 4.1 Single integrals and the …rst Wiener chaos . . . . . . . . . . . . . . . . . . . . . . 12 4.2 Multiple integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 5 Multiplication formulae 16 5.1 Contractions and multiplications . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 5.2 Multiple stochastic integrals as Hermite polynomials . . . . . . . . . . . . . . . . 17 5.3 Chaotic decompositions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Équipe Modal’X, Université Paris Ouest Naterre La Défense, 200 Avenue de la République, 92000 Nanterre and LSTA, Université Paris VI, France. E-mail: [email protected]. yThese notes will be posted and updated on my website www.geocities.com/giovannipeccati. Please, send me corrections/comments!

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stein Meets Malliavin in Normal Approximation

Stein’s method is a method of probability approximation which hinges on the solution of a functional equation. For normal approximation, the functional equation is a first-order differential equation. Malliavin calculus is an infinite-dimensional differential calculus whose operators act on functionals of general Gaussian processes. Nourdin and Peccati (Probab. Theory Relat. Fields 145(1–2), 75...

متن کامل

Application of Malliavin calculus to stochastic partial differential equations

The Malliavin calculus is an infinite dimensional calculus on a Gaussian space, which is mainly applied to establish the regularity of the law of nonlinear functionals of the underlying Gaussian process. Suppose that H is a real separable Hilbert space with scalar product denoted by 〈·, ·〉H . The norm of an element h ∈ H will be denoted by ‖h‖H . Consider a Gaussian family of random variables W...

متن کامل

Malliavin Calculus for Levy Markets and New Sensitivities

Abstract. We present a method to apply the Malliavin calculus to calculate sensitivities for exponential Levy models built from the Variance Gamma and Normal Inverse Gaussian processes. We also present new sensitivities for these processes. The calculation of the sensitivities is based on a finite dimensional Malliavin calculus and we compare the results with finite difference calculations. Thi...

متن کامل

Malliavin Calculus for Infinite-dimensional Systems with Additive Noise

We consider an infinite-dimensional dynamical system with polynomial nonlinearity and additive noise given by a finite number of Wiener processes. By studying how randomness is spread by the system we develop a counterpart of Hörmander’s classical theory in this setting. We study the distributions of finite-dimensional projections of the solutions and give conditions that provide existence and ...

متن کامل

Second order Poincaré inequalities and CLTs on Wiener space

We prove in nite-dimensional second order Poincaré inequalities on Wiener space, thus closing a circle of ideas linking limit theorems for functionals of Gaussian elds, Stein's method and Malliavin calculus. We provide two applications: (i) to a new second order characterization of CLTs on a xed Wiener chaos, and (ii) to linear functionals of Gaussian-subordinated elds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009